Formula Repository

This page is a sub-page of the page on our Learning Object Repository

///////

WordPress Latex support

AMS TeX Collections: Distribution

Latex documentation

Latex math symbols

Examples:

e^{\i \pi} + 1 = 0
sin{x} + 1 = 0
i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right>
 A  \textbf{bold \textit{Hello \LaTeX}} to start!

This is an in-text z=x+y math equation

———-

Generic function notation:

{f : \mathcal X \, \rightarrow \, \mathcal Y} ,

{\mathcal X \ni x \, \mapsto \, f(x )\in \mathcal Y} ,

\mathcal X \, \stackrel {f} {\longrightarrow} \, \mathcal Y ,

{x \, \longmapsto \, f(x)} ,

{{\mathcal X \, \stackrel {f} {\longrightarrow} \, \mathcal Y \:}\atop {\: x \, \longmapsto \, f(x) } } {\,} .

Inverse fourier transform:

f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi ,

Binary composition:

{\mathcal S \times \mathcal S \ni (x, y) \, \mapsto \, x \ast y \in \mathcal S} ,

z = x^{y^2} ,

{\oplus \atop {x \in \mathcal{P} } } ,

{\bigoplus \atop {x \in \mathcal{P} } } \mathbf {R} ,

\mathrm{supp} f = \{ x \in X \, : \, f(x) \neq 0 \} ,

R \subseteq \mathcal X \times \mathcal X

————–
x \pmod a
————–

\varphi ( x \ast y) = \varphi (x) {\ast}' \varphi (y), \, \forall x, y \in \mathcal G

\varphi ( x \ast y) = \varphi (x) {\ast}' \varphi (y), \, \forall x, y \in \mathcal G

Community: C = (A, P)

Activities: A = \{ A_1, A_2, \ldots, A_{n} \}

Participators: P = \{ P_1, P_2, \ldots, P_{m} \}

Possible participator grouping (of an activity A_{i} ):

\mathrm{P_{GI}}(A_{i}) = \sum_{k=1}^m (1-P_{k})(P_{k} \in A_{i}) A_{i}

Actual participator grouping (of an activity A_{i} ):

\mathrm{G_{I}}(A_{i}) = \sum_{j=1}^m \sum_{s \in {\prod_{}^j}m} P_{s}(P_{s} \in A_{i}) A_{i}

Possible activity grouping (of a participator P_{k} ):

\mathrm{P_{GI}}(P_{k}) = \sum_{i=1}^n (1-A_{i})(A_{i} \in P_{k}) P_{k}

Actual activity grouping (of a participator P_{k} ):

\mathrm{G_{I}}(P_{k}) = \sum_{i=1}^n \sum_{s \in {\prod_{}^i}n} A_{s}(A_{s} \in P_{k}) P_{k}

Cardinality formulas:

Total number of participators:

|P| = \sum_{k=1}^n (-1)^{k-1} \sum_{s \in {\prod_{}^k}n}|\cap P_{A_{s}}| = m

where

\cap P_{A_{(1,2)}} = P_{A_1} \cap P_{A_2}

Total number of activities:

|A| = \sum_{k=1}^m (-1)^{k-1} \sum_{s \in {\prod_{}^k}m}|\cap A_{P_{s}}| = n

where

\cap A_{P_{(1,2)}} = A_{P_1} \cap A_{P_2}

///////////

checking some expressions:

\mathbf N \times \mathbf N \, \stackrel {+} {\longrightarrow} \, \mathbf N

{\mathbf N \times \mathbf N \ni (x, y) \, \mapsto \, x + y \in \mathbf N}

The Tension-gradient of a Scenario:

dS_{cenario} = \sum_{T_{ensions}}{\frac{\partial{S_{cenario}}}{\partial{T_{ension}}}} dT_{ension}

\ldots

dS_{cenario} = \bigoplus_{T_{ensions}}{\frac{\partial{S_{cenario}}}{\partial{T_{ension}}}} dT_{ension}

dI_{ssue} = \sum_{T_{ensions}}{\frac{\partial{I_{ssue}}}{\partial{T_{ension}}}} dT_{ension}

dI_{ssue} = \bigoplus_{T_{ensions}}{\frac{\partial{I_{ssue}}}{\partial{T_{ension}}}} dT_{ension}

\int\limits_{a}^{b} f(x) \, dx

\int_a^b f(x) \, dx

f = {\sum\limits_{m \in M}^{ \text {} }}{f_m} m \, , \text{ and } \, g = {\sum\limits_{m \in m}^{ \text {} }}{g_m} m \, ,

R\{X\} \times R\{X\} \ni (f, g) \, \mapsto \, f \ast g \in {R\{X\}\, , \text{where} \, (f \ast g)(m) \stackrel {\mathrm{def}}{=}{\sum\limits_{m'm'' = m}^{ \text {} }f(m')g(m'')}}

////////////

\mathcal F \, \stackrel {\chi_{apple}} {\longrightarrow} \, \mathbf N \, , \, \mathcal F \, \stackrel {\chi_{pear}} {\longrightarrow} \, \mathbf N \, , \, \mathcal F \, \stackrel {\chi_{banana}} {\longrightarrow} \, \mathbf N

////////////

GRADIENTS

A function f from \mathbf{R}^2 to \mathbf{R} can be described by:

{{\mathbf{R}^2 \, \stackrel {f} {\longrightarrow} \, \mathbf{R} \:}\atop {\: (x,y) \, \longmapsto \, f(x,y) } } {\,}.

The differential df of the function f at the point (a,b) \in \mathbf{R}^2 is given by:

df_{(a,b)} = \frac{\partial f}{\partial x}_{(a,b)} dx + \frac{\partial f}{\partial y}_{(a,b)} dy.

The equation of the level curve ( \, f = const \, ) of the function f at the point (a,b) is given by:

f(x,y)=f(a,b).

The equation of the tangent to the level curve of the function f at the point (a,b) is given by:

\frac{\partial f}{\partial x}_{(a,b)} (x-a) + \frac{\partial f}{\partial y}_{(a,b)} (y-b) = 0.

The gradient

The gradient of the function f is the function {\triangledown f} defined by:

{{\mathbf{R}^2 \, \stackrel {\triangledown f} {\longrightarrow} \, \mathbf{R}^2 \:}\atop {\: (x,y) \, \longmapsto \, (\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}) } } {\,}.

Hence the value of {\triangledown f} at the point (x,y) is:

{\triangledown f}_{(x,y)} = (\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}).

The value of {\triangledown f}_{(x,y)} at the point x=a,y=b is obtained by evaluating the function {\triangledown f}_{(x,y)} at the point (a,b):

{\triangledown f}_{(a,b)} = (\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y})_{(a,b)}.

Hence we see that the gradient {\triangledown f}_{(a,b)} of the function f at the point (a,b) is perpendicular to the tangent of the level curve of the function f at the point (a,b).

Flying carpets and level surfaces

The “flying carpet equation” of the function f is given by:

z = f(x, y).

The level surface equation of the function f is given by:

g(x,y,z) \stackrel {\mathrm{def}}{=} f(x,y) - z = 0.

//////////
\mathrm{supp} f \, \stackrel {\mathrm{def}}{=} \{ x \in X \, : \, f(x) \neq 0 \} \, .
//////////

In the animation below, the “input” function f is given by:

f(x, y) = \frac{1}{3} (x^2 + 2 y^2) + \frac {3}{4}

///////////////

\begin{pmatrix} a & b \\ c & d \end{pmatrix}

\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix}_{x(p)}

df(x(u))_{f(x(p))} = f'(x(u))_{x(p)} x'(u)_p du = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix}_{x(p)} \begin{pmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} \\ \frac{\partial x_2}{\partial u_1} & \frac{\partial x_2}{\partial u_2} \end{pmatrix}_p \begin{pmatrix} du_1 \\ du_2 \end{pmatrix}

7 thoughts on “Formula Repository

  1. I was recommended this website by my cousin. I’m now not certain whether or not this submit is written by him as no one else recognize such targeted about my trouble. You are incredible! Thank you!

  2. If some one desires expert view concerning blogging
    and site-building after that i recommend him/her to
    pay a quick visit this weblog, Keep up the nice work.

  3. he estado navegando en línea más de 3 horas hoy, pero nunca encontré ningún artículo interesante como el tuyo.
    Es Vale bastante lo suficiente para mí. En mi opinión, si
    todos propietarios de sitios web y bloggers hacen un buen contenido como tú,
    Ahaa, es pleasant discussion el tema de este artículo aquí en este
    sitio web, he leído todo eso, así que ahora también estoy comentando
    aquí . mantener el excelente trabajar!

  4. I like this weblog very much, Its a very nice place to read and incur information. “If at first you don’t succeed, you’re running about average.” by M. H. Alderson.

  5. I have noticed you don’t monetize kth.se, don’t waste your traffic,
    you can earn extra cash every month with new monetization method.
    This is the best adsense alternative for any type of website (they approve all websites), for more
    details simply search in gooogle: murgrabia’s tools

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>