Homotopy

This page is a sub-page of our page on Mathematical Concepts.

///////

Related KMR-pages:

Mathematics is Representation
Homology and Cohomology
Quotients
Topology
Duality
Dimension
Entropy
Uncertainty

///////

Representation: \, [ \, \mathrm{Lies} \, ]_{\, \mathrm{Truths}} \, \mapsto \, \left< \, \overset{\mathrm{Homotopic}}{\mathrm{Equivalence}} \, \right>_{\mathrm{Truths}} \,

Definition: Two lies \, L_1 \, and \, L_2 \, are equivalent if and only if
they can be transformed into each other by valid (= true) reasoning.

///////

Homotopy = Equivalence in the fundamental group of curves on a point under continuous parametric transformations.

Homotopy of Midgaard Snakes:

Characterizing (= describing the structure of) the different types of ‘tailbites’ that can be performed by the Midgård Snake in a given type of world.

The fundamental group of the torus is abelian:

Perelman and the Poincaré conjecture:

Thorsten Ekedahl giving a popular lecture (in Swedish) on this subject .

///////

/////// Quoting Folke Eriksson, Flerdimensionell analys, p.98

Vi har hittills alltid tänkt oss ett enda fixt koordinatsystem i Rn \mathbb{R}^n Rn, t.ex xy xyxy-systemet i R2 \mathbb{R}^2 R2. I detta system har vi definierat ∇f=(fx′,fy′) \nabla f = (f’_x, f’_y) ∇f=(fx′​,fy′​). Gradienten kan emellertid uttryckas även i andra koordinatsystem, allmännare än rätvinkliga. Om t.ex (r,θ) (r, \theta) (r,θ) är polära koordinater, kan de partiella derivatorna av funktionen (r,θ)→f(rcos⁡θ,rsin⁡θ)=z (r, \theta) \rightarrow f(r \cos \theta, r \sin \theta) = z (r,θ)→f(rcosθ,rsinθ)=z, alltså ∂z∂r \frac {\partial z} {\partial r} ∂r∂z​ och ∂z∂θ \frac {\partial z} {\partial \theta} ∂θ∂z​, uppfattas som koordinater för ∇f \nabla f ∇f i rθ r \thetarθ-systemet. Själva vektorn ∇f \nabla f ∇f är då en och densamma, men den har olika koordinater i olika system.

Enligt 3.6 och 3.5 skulle man också, utan att direkt använda något koordinatsystem, kunna definiera gradienten geometriskt, med hjälp av nivåkurvornas (respektive nivåytornas) normaler, eller den riktning längs vilken funktionsvärdet växer snabbast (jämte ett mått på den snabbaste tillväxten). Gradienten ger således ett mer allmängiltigt uttryck för funktionsvärdets förändringar i närheten av en punkt a \mathbf {a} a än de partiella derivatorna, vilka ju bara hänför sig till ett speciellt koordinatsystem. Gradienten däremot är en sammanfattning av de partiella derivatornas värden i alla lämpliga koordinatsystem.

Vi kan lägga märke till en viktig skillnad mellan en gradientvektor ∇f \nabla f ∇f och en riktad sträcka v \mathbf {v} v. Medan ∣v∣ | \mathbf {v} | ∣v∣ (avståndet AB AB AB) naturligtvis har dimensionen längd, har ∣∇f∣ | \nabla f | ∣∇f∣ (om värdena av funktionen f f f är dimensionslösa tal) dimensionen (la¨ngd)−1 (\text {längd})^{-1} (la¨ngd)−1. Gradientens belopp anger alltså, som vi sett i avsnitt 3.5, värdeändring per längdenhet.

Med detta sammanhänger att ∇f \nabla f∇f vid koordinattransformation uppför sig helt annorlunda än riktade sträckor. Om man t.ex. från ett ortonormerat system med basvektorerna ei { \mathbf {e}}_i ei​ övergår till ett system med basvektorerna 2ei 2 {\mathbf{e}}_i 2ei​, gäller där för en riktad sträcka

v=∑viei=∑12vi(2ei)=∑vi′ (2ei) \mathbf {v} = \sum v_i {\mathbf {e}}_i = \sum \frac {1}{2} v_i (2 {\mathbf{e}}_i) = \sum v’_i \, (2 {\mathbf{e}}_i) v=∑vi​ei​=∑21​vi​(2ei​)=∑vi′​(2ei​),

där alltså vi′=12vi v’_i = \frac{1}{2} v_i vi′​=21​vi​. Gradientens koordinater i det nya koordinatsystemet är däremot enligt kedjeregeln:

∂f∂xi′=∑∂f∂xk∂xk∂xi′=∂f∂xi∂xi∂xi′=2∂f∂xi \dfrac{\partial f}{\partial x’_i} = \sum \dfrac{\partial f}{\partial x_k} \dfrac {\partial x_k}{\partial x’_i} = \dfrac {\partial f}{\partial x_i} \dfrac {\partial x_i}{\partial x’_i} = 2 \dfrac {\partial f}{\partial x_i} ∂xi′​∂f​=∑∂xk​∂f​∂xi′​∂xk​​=∂xi​∂f​∂xi′​∂xi​​=2∂xi​∂f​

ty xi=2xi′ x_i = 2 x’_i xi​=2xi′​.

Det är därför mindre lämpligt att skriva t.ex ∇f=∑∂f∂xiei \nabla f = \sum \frac {\partial f}{\partial x_i} {\mathbf{e}}_i ∇f=∑∂xi​∂f​ei​.

Däremot går det utmärkt att som i 3.5 införa skalärprodukten v⋅∇f \mathbf{v} \cdot \nabla f v⋅∇f. Det är t.om. så att formeln v⋅∇f=∑vi∂f∂xi \mathbf{v} \cdot \nabla f = \sum v_i \frac {\partial f}{\partial x_i} v⋅∇f=∑vi​∂xi​∂f​ för en sådan skalärprodukt gäller i varje koordinatsystem medan formeln v⋅u=∑viui \mathbf{v} \cdot \mathbf{u} = \sum v_i u_i v⋅u=∑vi​ui​ för två riktade sträckor bara gäller i ortonormerade system.

I vårt exempel nyss är vi∂f∂xi=∑vi′∂f∂xi′ v_i \frac {\partial f}{\partial x_i} = \sum v’_i \frac {\partial f}{\partial x’_i} vi​∂xi​∂f​=∑vi′​∂xi′​∂f​, men ∑vi2=4∑vi′2 \sum {v_i}^2 = 4 \sum {v’_i}^2 ∑vi​2=4∑vi′​2.

Det är lämpligt att skriva ∇f \nabla f ∇f som en matris G G G med en rad, och en riktad sträcka v \mathbf {v} v som en matris V V V med en kolonn. Då blir skalärprodukten ∇f⋅v \nabla f \cdot \mathbf{v} ∇f⋅v lika med matrisprodukten GV GV GV.

I fysikaliska (med flera) tillämpningar förekommer många storheter, som vid koordinattransformationer i rummet uppför sig som vektorer av det ena eller andra slaget, men som därjämte har annan fysikalisk dimension. Somliga, som t.ex hastighet (med dimensionen längd/tid), transformeras på samma sätt som riktade sträckor och kallas kontravarianta vektorer. Andra, t.ex kraft (kraften är ofta lika med gradienten av en funktion V(x) V(\mathbf{x}) V(x)), transformeras som gradienter och kallas kovarianta vektorer. Så länge som man bara använder ortonormerade koordinatsystem, kan man räkna på samma sätt med båda slagen av vektorer. Men i allmännare koordinatsystem är skillnaden väsentlig.

I allmänna koordinatsystem är det inte så lätt att direkt definiera koordinater för riktade sträckor på ett lämpligt sätt. Man behöver nämligen räkna med olika basvektorer i olika punkter. För t.ex polära koordinater med basvektorerna er {\mathbf{e}}_r er​ och eθ {\mathbf{e}}_{\theta} eθ​ behöver man räkna med de riktningar som linjerna θ=θ0 \theta = {\theta}_0 θ=θ0​ respektive cirklarna r=r0 r = r_0 r=r0​ har i olika punkter. Basvektorerna kan då vara olika i olika punkter av en sträcka AB AB AB.

Man kan i stället i det allmänna fallet utgå från kedjeregeln, vilken ger transformationsformlerna för koordinaterna av en gradient (jfr (4), sid 84). En kovariant vektor är definitionsmässigt en n nn-tipel av tal uk(S),k=1,2,…,n) u_k (S), k = 1, 2, \dots, n) uk​(S),k=1,2,…,n), som varierar med koordinatsystemet S S S enligt de nämnda transformationsformlerna.

Analogt definierar man en kontravariant vektor v \mathbf{v} v som en n nn-tipel av tal vk(S) v_k (S) vk​(S), som beror på koordinatsystemet S S S på ett annat specifikt sätt. Detta kan karaktäriseras just av att “skalärprodukten” ∑uk(S) vk(S) \sum u_k (S) \, v_k (S) ∑uk​(S)vk​(S) av en kovariant vektor u \mathbf{u} u och en kontravariant vektor v \mathbf{v} v är oberoende av koordinatsystemet S S S.

Det finns även allmännare s.k. geometriska objekt (t.ex. pseudovektorer och tensorer), vilka varierar med koordinatsystemet på andra sätt.

/////// End of quote from Eriksson, Flerdimensionell analys.

Leave a Reply